$\boldsymbol b$-Generalized Skew Derivations on Multilinear Polynomials
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 1, p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a prime ring of characteristic different from $2$ with the center $Z(R)$ and $F$, $G$ be $b$-generalized skew derivations on $R$. Let $U$ be Utumi quotient ring of $R$ with the extended centroid $C$ and $f(x_1,\ldots,x_n)$ be a multilinear polynomial over $C$ which is not central valued on $R$. Suppose that $P\notin Z(R)$ such that $\big[P,[F(f(r)),f(r)]\big]=[G(f(r)), f(r)],$ for all $r=(r_1,\ldots,r_n)\in R^n$, then one of the following holds: \begin{itemize} em [(1)] there exist $\lambda,µ\in C$ such that $F(x)=\lambda x$, $G(x)=µx$ for all $x\in R$; em [(2)] there exist $a,b \in U$, $\lambda,µ\in C$ such that $F(x)=ax+\lambda x+xa$, $G(x)=bx+µx+xb$ for all $x\in R$ and $f(x_1,\ldots,x_n)^2$ is central valued on $R$. \end{itemize}
DOI : 10.46793/KgJMat2301.021P
Classification : 16N60, 16W25
Keywords: $b$-Generalized skew derivations, multilinear polynomials, prime rings, the extended centroid, Utumi quotient ring
@article{10_46793_KgJMat2301_021P,
     author = {Balc and and Prajapati},
     title = {$\boldsymbol b${-Generalized} {Skew} {Derivations} on {Multilinear} {Polynomials}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {21 },
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2023},
     doi = {10.46793/KgJMat2301.021P},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2301.021P/}
}
TY  - JOUR
AU  - Balc
AU  - and Prajapati
TI  - $\boldsymbol b$-Generalized Skew Derivations on Multilinear Polynomials
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 21 
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2301.021P/
DO  - 10.46793/KgJMat2301.021P
LA  - en
ID  - 10_46793_KgJMat2301_021P
ER  - 
%0 Journal Article
%A Balc
%A and Prajapati
%T $\boldsymbol b$-Generalized Skew Derivations on Multilinear Polynomials
%J Kragujevac Journal of Mathematics
%D 2023
%P 21 
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2301.021P/
%R 10.46793/KgJMat2301.021P
%G en
%F 10_46793_KgJMat2301_021P
Balc; and Prajapati. $\boldsymbol b$-Generalized Skew Derivations on Multilinear Polynomials. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 1, p. 21 . doi : 10.46793/KgJMat2301.021P. http://geodesic.mathdoc.fr/articles/10.46793/KgJMat2301.021P/

Cité par Sources :