Algebraic cycles on Gushel-Mukai varieties
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
We study algebraic cycles on complex Gushel-Mukai (GM) varieties. We prove the generalised Hodge conjecture, the (motivated) Mumford-Tate conjecture, and the generalised Tate conjecture for all GM varieties. We compute all integral Chow groups of GM varieties, except for the only two infinite-dimensional cases (1-cycles on GM fourfolds and 2-cycles on GM sixfolds). We prove that if two GM varieties are generalised partners or generalised duals, their rational Chow motives in middle degree are isomorphic.
@article{10_46298_epiga_2024_9815,
author = {Fu, Lie and Moonen, Ben},
title = {Algebraic cycles on {Gushel-Mukai} varieties},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2024.9815},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.9815/}
}
Fu, Lie; Moonen, Ben. Algebraic cycles on Gushel-Mukai varieties. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2024.9815
Cité par Sources :