Logarithmic resolution via multi-weighted blow-ups
Épijournal de Géométrie Algébrique, Tome 8 (2024)
Voir la notice de l'article provenant de la source Episciences
We first introduce and study the notion of multi-weighted blow-ups, which is later used to systematically construct an explicit yet efficient algorithm for functorial logarithmic resolution in characteristic zero, in the sense of Hironaka. Specifically, for a singular, reduced closed subscheme $X$ of a smooth scheme $Y$ over a field of characteristic zero, we resolve the singularities of $X$ by taking proper transforms $X_i \subset Y_i$ along a sequence of multi-weighted blow-ups $Y_N \to Y_{N-1} \to \dotsb \to Y_0 = Y$ which satisfies the following properties: (i) the $Y_i$ are smooth Artin stacks with simple normal crossing exceptional loci; (ii) at each step we always blow up the worst singular locus of $X_i$, and witness on $X_{i+1}$ an immediate improvement in singularities; (iii) and finally, the singular locus of $X$ is transformed into a simple normal crossing divisor on $X_N$.
@article{10_46298_epiga_2024_9793,
author = {Abramovich, Dan and Quek, Ming Hao},
title = {Logarithmic resolution via multi-weighted blow-ups},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {8},
year = {2024},
doi = {10.46298/epiga.2024.9793},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.9793/}
}
TY - JOUR AU - Abramovich, Dan AU - Quek, Ming Hao TI - Logarithmic resolution via multi-weighted blow-ups JO - Épijournal de Géométrie Algébrique PY - 2024 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.9793/ DO - 10.46298/epiga.2024.9793 LA - en ID - 10_46298_epiga_2024_9793 ER -
Abramovich, Dan; Quek, Ming Hao. Logarithmic resolution via multi-weighted blow-ups. Épijournal de Géométrie Algébrique, Tome 8 (2024). doi: 10.46298/epiga.2024.9793
Cité par Sources :