Difference varieties and the Green-Lazarsfeld Secant Conjecture
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
The Green-Lazarsfeld Secant Conjecture is a generalization of Green's Conjecture on syzygies of canonical curves to the cases of arbitrary line bundles. We establish the Green-Lazarsfeld Secant Conjecture for curves of genus g in all the divisorial case, that is, when the line bundles that fail to be (p+1)-very ample form a divisor in the Jacobian of the curve.
@article{10_46298_epiga_2024_11658,
author = {Farkas, Gavril},
title = {Difference varieties and the {Green-Lazarsfeld} {Secant} {Conjecture}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2024.11658},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11658/}
}
TY - JOUR AU - Farkas, Gavril TI - Difference varieties and the Green-Lazarsfeld Secant Conjecture JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11658/ DO - 10.46298/epiga.2024.11658 LA - en ID - 10_46298_epiga_2024_11658 ER -
Farkas, Gavril. Difference varieties and the Green-Lazarsfeld Secant Conjecture. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2024.11658
Cité par Sources :