Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions
Épijournal de Géométrie Algébrique, Tome 8 (2024)

Voir la notice de l'article provenant de la source Episciences

Bernstein-Schwarzman conjectured that the quotient of a complex affine space by an irreducible complex crystallographic group generated by reflections is a weighted projective space. The conjecture was proved by Schwarzman and Tokunaga-Yoshida in dimension 2 for almost all such groups, and for all crystallographic reflection groups of Coxeter type by Looijenga, Bernstein-Schwarzman and Kac-Peterson in any dimension. We prove that the conjecture is true for the crystallographic reflection group in dimension 3 for which the associated collineation group is Klein's simple group of order 168. In this case the quotient is the 3-dimensional weighted projective space with weights 1, 2, 4, 7. The main ingredient in the proof is the computation of the algebra of invariant theta functions. Unlike the Coxeter case, the invariant algebra is not free polynomial, and this was the major stumbling block.
DOI : 10.46298/epiga.2024.11511
Classification : 11F22, 14B05, 14H45, 20D06, 20H15
@article{10_46298_epiga_2024_11511,
     author = {Markushevich, Dimitri and Moreau, Anne},
     title = {Action of the automorphism group on the {Jacobian} of {Klein's} quartic curve {II:} {Invariant} theta functions},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {8},
     year = {2024},
     doi = {10.46298/epiga.2024.11511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11511/}
}
TY  - JOUR
AU  - Markushevich, Dimitri
AU  - Moreau, Anne
TI  - Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions
JO  - Épijournal de Géométrie Algébrique
PY  - 2024
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11511/
DO  - 10.46298/epiga.2024.11511
LA  - en
ID  - 10_46298_epiga_2024_11511
ER  - 
%0 Journal Article
%A Markushevich, Dimitri
%A Moreau, Anne
%T Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions
%J Épijournal de Géométrie Algébrique
%D 2024
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11511/
%R 10.46298/epiga.2024.11511
%G en
%F 10_46298_epiga_2024_11511
Markushevich, Dimitri; Moreau, Anne. Action of the automorphism group on the Jacobian of Klein's quartic curve II: Invariant theta functions. Épijournal de Géométrie Algébrique, Tome 8 (2024). doi: 10.46298/epiga.2024.11511

Cité par Sources :