Etale descent obstruction and anabelian geometry of curves over finite fields
Épijournal de Géométrie Algébrique, Tome 8 (2024)

Voir la notice de l'article provenant de la source Episciences

Let $C$ and $D$ be smooth, proper and geometrically integral curves over a finite field $F$. Any morphism from $D$ to $C$ induces a morphism of their étale fundamental groups. The anabelian philosophy proposed by Grothendieck suggests that, when $C$ has genus at least $2$, all open homomorphisms between the étale fundamental groups should arise in this way from a nonconstant morphism of curves. We relate this expectation to the arithmetic of the curve $C_K$ over the global function field $K = F(D)$. Specifically, we show that there is a bijection between the set of conjugacy classes of well-behaved morphism of fundamental groups and locally constant adelic points of $C_K$ that survive étale descent. We use this to provide further evidence for the anabelian conjecture by relating it to another recent conjecture by Sutherland and the second author.
DOI : 10.46298/epiga.2024.11483
Classification : 11G20, 11G30, 14G05, 14G15
@article{10_46298_epiga_2024_11483,
     author = {Creutz, Brendan and Voloch, Jose Felipe},
     title = {Etale descent obstruction and anabelian geometry of curves over finite fields},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {8},
     year = {2024},
     doi = {10.46298/epiga.2024.11483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11483/}
}
TY  - JOUR
AU  - Creutz, Brendan
AU  - Voloch, Jose Felipe
TI  - Etale descent obstruction and anabelian geometry of curves over finite fields
JO  - Épijournal de Géométrie Algébrique
PY  - 2024
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11483/
DO  - 10.46298/epiga.2024.11483
LA  - en
ID  - 10_46298_epiga_2024_11483
ER  - 
%0 Journal Article
%A Creutz, Brendan
%A Voloch, Jose Felipe
%T Etale descent obstruction and anabelian geometry of curves over finite fields
%J Épijournal de Géométrie Algébrique
%D 2024
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11483/
%R 10.46298/epiga.2024.11483
%G en
%F 10_46298_epiga_2024_11483
Creutz, Brendan; Voloch, Jose Felipe. Etale descent obstruction and anabelian geometry of curves over finite fields. Épijournal de Géométrie Algébrique, Tome 8 (2024). doi: 10.46298/epiga.2024.11483

Cité par Sources :