Extensions of curves with high degree with respect to the genus
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)

Voir la notice de l'article provenant de la source Episciences

We classify linearly normal surfaces $S \subset \mathbf{P}^{r+1}$ of degree $d$ such that $4g-4 \leq d \leq 4g+4$, where $g>1$ is the sectional genus (it is a classical result that for larger $d$ there are only cones). We apply this to the study of the extension theory of pluricanonical curves and genus $3$ curves, whenever they verify Property $N_2$, using and slightly expanding the theory of integration of ribbons of the authors and E. Sernesi. We compute the corank of the relevant Gaussian maps, and we show that all ribbons over such curves are integrable, and thus there exists a universal extension. We carry out a similar program for linearly normal hyperelliptic curves of degree $d\geq 2g+3$. We classify surfaces having such a curve $C$ as a hyperplane section, compute the corank of the relevant Gaussian maps, and prove that all ribbons over $C$ are integrable if and only if $d=2g+3$. In the latter case we obtain the existence of a universal extension.
DOI : 10.46298/epiga.2024.11202
Classification : 14C20, 14D20, 14J25
@article{10_46298_epiga_2024_11202,
     author = {Ciliberto, Ciro and Dedieu, Thomas},
     title = {Extensions of curves with high degree with respect to the genus},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.46298/epiga.2024.11202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11202/}
}
TY  - JOUR
AU  - Ciliberto, Ciro
AU  - Dedieu, Thomas
TI  - Extensions of curves with high degree with respect to the genus
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11202/
DO  - 10.46298/epiga.2024.11202
LA  - en
ID  - 10_46298_epiga_2024_11202
ER  - 
%0 Journal Article
%A Ciliberto, Ciro
%A Dedieu, Thomas
%T Extensions of curves with high degree with respect to the genus
%J Épijournal de Géométrie Algébrique
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.11202/
%R 10.46298/epiga.2024.11202
%G en
%F 10_46298_epiga_2024_11202
Ciliberto, Ciro; Dedieu, Thomas. Extensions of curves with high degree with respect to the genus. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2024.11202

Cité par Sources :