Rank 4 stable vector bundles on hyperkähler fourfolds of Kummer type
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
We partially extend to hyperk"ahler fourfolds of Kummer type the results that we have proved regarding stable rigid vector bundles on hyperk"ahler (HK) varieties of type $K3^{[n]}$. Let $(M,h)$ be a general polarized HK fourfold of Kummer type such that $q_M(h)\equiv -6\pmod{16}$ and the divisibility of $h$ is $2$, or $q_M(h)\equiv -6\pmod{144}$ and the divisibility of $h$ is $6$. We show that there exists a unique (up to isomorphism) slope stable vector bundle $\cal F$ on $M$ such that $r({\cal F})=4$, $ c_1({\cal F})=h$, $\Delta({\cal F})=c_2(M)$. Moreover $\cal F$ is rigid. One of our motivations is the desire to describe explicitly a locally complete family of polarized HK fourfolds of Kummer type.
@article{10_46298_epiga_2024_10857,
author = {O'Grady, Kieran G.},
title = {Rank 4 stable vector bundles on hyperk\"ahler fourfolds of {Kummer} type},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2024.10857},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10857/}
}
TY - JOUR AU - O'Grady, Kieran G. TI - Rank 4 stable vector bundles on hyperkähler fourfolds of Kummer type JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10857/ DO - 10.46298/epiga.2024.10857 LA - en ID - 10_46298_epiga_2024_10857 ER -
O'Grady, Kieran G. Rank 4 stable vector bundles on hyperkähler fourfolds of Kummer type. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2024.10857
Cité par Sources :