Categorical absorptions of singularities and degenerations
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
We introduce the notion of categorical absorption of singularities: an operation that removes from the derived category of a singular variety a small admissible subcategory responsible for singularity and leaves a smooth and proper category. We construct (under appropriate assumptions) a categorical absorption for a projective variety $X$ with isolated ordinary double points. We further show that for any smoothing $\mathcal{X}/B$ of $X$ over a smooth curve $B$, the smooth part of the derived category of $X$ extends to a smooth and proper over $B$ family of triangulated subcategories in the fibers of $\mathcal{X}$.
@article{10_46298_epiga_2024_10836,
author = {Kuznetsov, Alexander and Shinder, Evgeny},
title = {Categorical absorptions of singularities and degenerations},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2024.10836},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10836/}
}
TY - JOUR AU - Kuznetsov, Alexander AU - Shinder, Evgeny TI - Categorical absorptions of singularities and degenerations JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10836/ DO - 10.46298/epiga.2024.10836 LA - en ID - 10_46298_epiga_2024_10836 ER -
%0 Journal Article %A Kuznetsov, Alexander %A Shinder, Evgeny %T Categorical absorptions of singularities and degenerations %J Épijournal de Géométrie Algébrique %D 2023 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10836/ %R 10.46298/epiga.2024.10836 %G en %F 10_46298_epiga_2024_10836
Kuznetsov, Alexander; Shinder, Evgeny. Categorical absorptions of singularities and degenerations. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2024.10836
Cité par Sources :