On the dual positive cones and the algebraicity of a compact Kähler manifold
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
We investigate the algebraicity of compact K"ahler manifolds admitting a positive rational Hodge class of bidimension $(1,1)$. We prove that if the dual K"ahler cone of a compact K"ahler manifold $X$ contains a rational class as an interior point, then its Albanese variety is projective. As a consequence, we answer the Oguiso–Peternell problem for Ricci-flat compact K"ahler manifolds. We also study related algebraicity problems for threefolds.
@article{10_46298_epiga_2024_10771,
author = {Lin, Hsueh-Yung},
title = {On the dual positive cones and the algebraicity of a compact {K\"ahler} manifold},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2024.10771},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10771/}
}
TY - JOUR AU - Lin, Hsueh-Yung TI - On the dual positive cones and the algebraicity of a compact Kähler manifold JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10771/ DO - 10.46298/epiga.2024.10771 LA - en ID - 10_46298_epiga_2024_10771 ER -
%0 Journal Article %A Lin, Hsueh-Yung %T On the dual positive cones and the algebraicity of a compact Kähler manifold %J Épijournal de Géométrie Algébrique %D 2023 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2024.10771/ %R 10.46298/epiga.2024.10771 %G en %F 10_46298_epiga_2024_10771
Lin, Hsueh-Yung. On the dual positive cones and the algebraicity of a compact Kähler manifold. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2024.10771
Cité par Sources :