Curve counting and S-duality
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We work on a projective threefold $X$ which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as $\mathbb P^3$ or the quintic threefold. We prove certain moduli spaces of 2-dimensional torsion sheaves on $X$ are smooth bundles over Hilbert schemes of ideal sheaves of curves and points in $X$. When $X$ is Calabi-Yau this gives a simple wall crossing formula expressing curve counts (and so ultimately Gromov-Witten invariants) in terms of counts of D4-D2-D0 branes. These latter invariants are predicted to have modular properties which we discuss from the point of view of S-duality and Noether-Lefschetz theory.
DOI : 10.46298/epiga.2023.volume7.9818
Classification : 14D20, 14J60, 14N35
@article{10_46298_epiga_2023_volume7_9818,
     author = {Feyzbakhsh, Soheyla and Thomas, Richard P.},
     title = {Curve counting and {S-duality}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.volume7.9818},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9818/}
}
TY  - JOUR
AU  - Feyzbakhsh, Soheyla
AU  - Thomas, Richard P.
TI  - Curve counting and S-duality
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9818/
DO  - 10.46298/epiga.2023.volume7.9818
LA  - en
ID  - 10_46298_epiga_2023_volume7_9818
ER  - 
%0 Journal Article
%A Feyzbakhsh, Soheyla
%A Thomas, Richard P.
%T Curve counting and S-duality
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9818/
%R 10.46298/epiga.2023.volume7.9818
%G en
%F 10_46298_epiga_2023_volume7_9818
Feyzbakhsh, Soheyla; Thomas, Richard P. Curve counting and S-duality. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.9818

Cité par Sources :