Families of stable 3-folds in positive characteristic
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We show that flat families of stable 3-folds do not lead to proper moduli spaces in any characteristic $p>0$. As a byproduct, we obtain log canonical 4-fold pairs, whose log canonical centers are not weakly normal.
@article{10_46298_epiga_2023_volume7_9730,
     author = {Koll\'ar, J\'anos},
     title = {Families of stable 3-folds in positive characteristic},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.volume7.9730},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9730/}
}
TY  - JOUR
AU  - Kollár, János
TI  - Families of stable 3-folds in positive characteristic
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9730/
DO  - 10.46298/epiga.2023.volume7.9730
LA  - en
ID  - 10_46298_epiga_2023_volume7_9730
ER  - 
%0 Journal Article
%A Kollár, János
%T Families of stable 3-folds in positive characteristic
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9730/
%R 10.46298/epiga.2023.volume7.9730
%G en
%F 10_46298_epiga_2023_volume7_9730
Kollár, János. Families of stable 3-folds in positive characteristic. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.9730

Cité par Sources :