Families of stable 3-folds in positive characteristic
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
We show that flat families of stable 3-folds do not lead to proper moduli spaces in any characteristic $p>0$. As a byproduct, we obtain log canonical 4-fold pairs, whose log canonical centers are not weakly normal.
@article{10_46298_epiga_2023_volume7_9730,
author = {Koll\'ar, J\'anos},
title = {Families of stable 3-folds in positive characteristic},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.volume7.9730},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9730/}
}
TY - JOUR AU - Kollár, János TI - Families of stable 3-folds in positive characteristic JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9730/ DO - 10.46298/epiga.2023.volume7.9730 LA - en ID - 10_46298_epiga_2023_volume7_9730 ER -
%0 Journal Article %A Kollár, János %T Families of stable 3-folds in positive characteristic %J Épijournal de Géométrie Algébrique %D 2023 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9730/ %R 10.46298/epiga.2023.volume7.9730 %G en %F 10_46298_epiga_2023_volume7_9730
Kollár, János. Families of stable 3-folds in positive characteristic. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.9730
Cité par Sources :