Reduction of Kummer surfaces modulo 2 in the non-supersingular case
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
We obtain necessary and sufficient conditions for the good reduction of Kummer surfaces attached to abelian surfaces with non-supersingular reduction when the residue field is perfect of characteristic 2. In this case, good reduction with an algebraic space model is equivalent to good reduction with a scheme model, which we explicitly construct.
@article{10_46298_epiga_2023_volume7_9657,
author = {Lazda, Christopher and Skorobogatov, Alexei},
title = {Reduction of {Kummer} surfaces modulo 2 in the non-supersingular case},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.volume7.9657},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9657/}
}
TY - JOUR AU - Lazda, Christopher AU - Skorobogatov, Alexei TI - Reduction of Kummer surfaces modulo 2 in the non-supersingular case JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9657/ DO - 10.46298/epiga.2023.volume7.9657 LA - en ID - 10_46298_epiga_2023_volume7_9657 ER -
%0 Journal Article %A Lazda, Christopher %A Skorobogatov, Alexei %T Reduction of Kummer surfaces modulo 2 in the non-supersingular case %J Épijournal de Géométrie Algébrique %D 2023 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9657/ %R 10.46298/epiga.2023.volume7.9657 %G en %F 10_46298_epiga_2023_volume7_9657
Lazda, Christopher; Skorobogatov, Alexei. Reduction of Kummer surfaces modulo 2 in the non-supersingular case. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.9657
Cité par Sources :