Reduction of Kummer surfaces modulo 2 in the non-supersingular case
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We obtain necessary and sufficient conditions for the good reduction of Kummer surfaces attached to abelian surfaces with non-supersingular reduction when the residue field is perfect of characteristic 2. In this case, good reduction with an algebraic space model is equivalent to good reduction with a scheme model, which we explicitly construct.
@article{10_46298_epiga_2023_volume7_9657,
     author = {Lazda, Christopher and Skorobogatov, Alexei},
     title = {Reduction of {Kummer} surfaces modulo 2 in the non-supersingular case},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.volume7.9657},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9657/}
}
TY  - JOUR
AU  - Lazda, Christopher
AU  - Skorobogatov, Alexei
TI  - Reduction of Kummer surfaces modulo 2 in the non-supersingular case
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9657/
DO  - 10.46298/epiga.2023.volume7.9657
LA  - en
ID  - 10_46298_epiga_2023_volume7_9657
ER  - 
%0 Journal Article
%A Lazda, Christopher
%A Skorobogatov, Alexei
%T Reduction of Kummer surfaces modulo 2 in the non-supersingular case
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.9657/
%R 10.46298/epiga.2023.volume7.9657
%G en
%F 10_46298_epiga_2023_volume7_9657
Lazda, Christopher; Skorobogatov, Alexei. Reduction of Kummer surfaces modulo 2 in the non-supersingular case. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.9657

Cité par Sources :