Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
In this paper, we study various hyperbolicity properties for a quasi-compact K"ahler manifold $U$ which admits a complex polarized variation of Hodge structures so that each fiber of the period map is zero-dimensional. In the first part, we prove that $U$ is algebraically hyperbolic and that the generalized big Picard theorem holds for $U$. In the second part, we prove that there is a finite étale cover $\tilde{U}$ of $U$ from a quasi-projective manifold $\tilde{U}$ such that any projective compactification $X$ of $\tilde{U}$ is Picard hyperbolic modulo the boundary $X-\tilde{U}$, and any irreducible subvariety of $X$ not contained in $X-\tilde{U}$ is of general type. This result coarsely incorporates previous works by Nadel, Rousseau, Brunebarbe and Cadorel on the hyperbolicity of compactifications of quotients of bounded symmetric domains by torsion-free lattices.
@article{10_46298_epiga_2023_volume7_8393,
author = {Deng, Ya},
title = {Big {Picard} theorems and algebraic hyperbolicity for varieties admitting a variation of {Hodge} structures},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.volume7.8393},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.8393/}
}
TY - JOUR AU - Deng, Ya TI - Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.8393/ DO - 10.46298/epiga.2023.volume7.8393 LA - en ID - 10_46298_epiga_2023_volume7_8393 ER -
%0 Journal Article %A Deng, Ya %T Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures %J Épijournal de Géométrie Algébrique %D 2023 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.8393/ %R 10.46298/epiga.2023.volume7.8393 %G en %F 10_46298_epiga_2023_volume7_8393
Deng, Ya. Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.8393
Cité par Sources :