Stably semiorthogonally indecomposable varieties
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
A triangulated category is said to be indecomposable if it admits no nontrivial semiorthogonal decompositions. We introduce a definition of a noncommutatively stably semiorthogonally indecomposable (NSSI) variety. This propery implies, among other things, that each smooth proper subvariety has indecomposable derived category of coherent sheaves, and that if $Y$ is NSSI, then for any variety $X$ all semiorthogonal decompositions of $X \times Y$ are induced from decompositions of $X$. We prove that any variety whose Albanese morphism is finite is NSSI, and that the total space of a fibration over NSSI base with NSSI fibers is also NSSI. We apply this indecomposability to deduce that there are no phantom subcategories in some varieties, including surfaces $C \times \mathbb{P}^1$, where $C$ is any smooth proper curve of positive genus.
@article{10_46298_epiga_2023_volume7_7700,
author = {Pirozhkov, Dmitrii},
title = {Stably semiorthogonally indecomposable varieties},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.volume7.7700},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.7700/}
}
TY - JOUR AU - Pirozhkov, Dmitrii TI - Stably semiorthogonally indecomposable varieties JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.7700/ DO - 10.46298/epiga.2023.volume7.7700 LA - en ID - 10_46298_epiga_2023_volume7_7700 ER -
%0 Journal Article %A Pirozhkov, Dmitrii %T Stably semiorthogonally indecomposable varieties %J Épijournal de Géométrie Algébrique %D 2023 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.volume7.7700/ %R 10.46298/epiga.2023.volume7.7700 %G en %F 10_46298_epiga_2023_volume7_7700
Pirozhkov, Dmitrii. Stably semiorthogonally indecomposable varieties. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.volume7.7700
Cité par Sources :