The cotangent bundle of K3 surfaces of degree two
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
K3 surfaces have been studied from many points of view, but the positivity of the cotangent bundle is not well understood. In this paper we explore the surprisingly rich geometry of the projectivised cotangent bundle of a very general polarised K3 surface $S$ of degree two. In particular, we describe the geometry of a surface $D_S \subset \mathbb{P}(\Omega_S)$ that plays a similar role to the surface of bitangents for a quartic in $\mathbb{P}^3$.
@article{10_46298_epiga_2023_9960,
author = {Anella, Fabrizio and H\"oring, Andreas},
title = {The cotangent bundle of {K3} surfaces of degree two},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2023.9960},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9960/}
}
TY - JOUR AU - Anella, Fabrizio AU - Höring, Andreas TI - The cotangent bundle of K3 surfaces of degree two JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9960/ DO - 10.46298/epiga.2023.9960 LA - en ID - 10_46298_epiga_2023_9960 ER -
Anella, Fabrizio; Höring, Andreas. The cotangent bundle of K3 surfaces of degree two. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.9960
Cité par Sources :