Trace formalism for motivic cohomology
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
The goal of this paper is to construct trace maps for the six functor formalism of motivic cohomology after Voevodsky, Ayoub, and Cisinski-Déglise. We also construct an $\infty$-enhancement of such a trace formalism. In the course of the $\infty$-enhancement, we need to reinterpret the trace formalism in a more functorial manner. This is done by using Suslin-Voevodsky's relative cycle groups.
@article{10_46298_epiga_2023_9742,
author = {Abe, Tomoyuki},
title = {Trace formalism for motivic cohomology},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.9742},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9742/}
}
Abe, Tomoyuki. Trace formalism for motivic cohomology. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.9742
Cité par Sources :