Trace formalism for motivic cohomology
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

The goal of this paper is to construct trace maps for the six functor formalism of motivic cohomology after Voevodsky, Ayoub, and Cisinski-Déglise. We also construct an $\infty$-enhancement of such a trace formalism. In the course of the $\infty$-enhancement, we need to reinterpret the trace formalism in a more functorial manner. This is done by using Suslin-Voevodsky's relative cycle groups.
DOI : 10.46298/epiga.2023.9742
Classification : 14F42, 18N60
@article{10_46298_epiga_2023_9742,
     author = {Abe, Tomoyuki},
     title = {Trace formalism for motivic cohomology},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.9742},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9742/}
}
TY  - JOUR
AU  - Abe, Tomoyuki
TI  - Trace formalism for motivic cohomology
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9742/
DO  - 10.46298/epiga.2023.9742
LA  - en
ID  - 10_46298_epiga_2023_9742
ER  - 
%0 Journal Article
%A Abe, Tomoyuki
%T Trace formalism for motivic cohomology
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9742/
%R 10.46298/epiga.2023.9742
%G en
%F 10_46298_epiga_2023_9742
Abe, Tomoyuki. Trace formalism for motivic cohomology. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.9742

Cité par Sources :