Perverse-Hodge complexes for Lagrangian fibrations
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
Perverse-Hodge complexes are objects in the derived category of coherent sheaves obtained from Hodge modules associated with Saito's decomposition theorem. We study perverse-Hodge complexes for Lagrangian fibrations and propose a symmetry between them. This conjectural symmetry categorifies the quot;Perverse = Hodge quot; identity of the authors and specializes to Matsushita's theorem on the higher direct images of the structure sheaf. We verify our conjecture in several cases by making connections with variations of Hodge structures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras.
@article{10_46298_epiga_2023_9617,
author = {Shen, Junliang and Yin, Qizheng},
title = {Perverse-Hodge complexes for {Lagrangian} fibrations},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2023.9617},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9617/}
}
TY - JOUR AU - Shen, Junliang AU - Yin, Qizheng TI - Perverse-Hodge complexes for Lagrangian fibrations JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9617/ DO - 10.46298/epiga.2023.9617 LA - en ID - 10_46298_epiga_2023_9617 ER -
Shen, Junliang; Yin, Qizheng. Perverse-Hodge complexes for Lagrangian fibrations. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.9617
Cité par Sources :