Affine Subspace Concentration Conditions
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric varieties.
DOI : 10.46298/epiga.2023.9382
Classification : 14J60, 14M25, 52B20
@article{10_46298_epiga_2023_9382,
     author = {Wu, Kuang-Yu},
     title = {Affine {Subspace} {Concentration} {Conditions}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.9382},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9382/}
}
TY  - JOUR
AU  - Wu, Kuang-Yu
TI  - Affine Subspace Concentration Conditions
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9382/
DO  - 10.46298/epiga.2023.9382
LA  - en
ID  - 10_46298_epiga_2023_9382
ER  - 
%0 Journal Article
%A Wu, Kuang-Yu
%T Affine Subspace Concentration Conditions
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.9382/
%R 10.46298/epiga.2023.9382
%G en
%F 10_46298_epiga_2023_9382
Wu, Kuang-Yu. Affine Subspace Concentration Conditions. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.9382

Cité par Sources :