Maximality of moduli spaces of vector bundles on curves
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We prove that moduli spaces of semistable vector bundles of coprime rank and degree over a non-singular real projective curve are maximal real algebraic varieties if and only if the base curve itself is maximal. This provides a new family of maximal varieties, with members of arbitrarily large dimension. We prove the result by comparing the Betti numbers of the real locus to the Hodge numbers of the complex locus and showing that moduli spaces of vector bundles over a maximal curve actually satisfy a property which is stronger than maximality and that we call Hodge-expressivity. We also give a brief account on other varieties for which this property was already known.
DOI : 10.46298/epiga.2023.8793
Classification : 14H60, 14P25
@article{10_46298_epiga_2023_8793,
     author = {Brugall\'e, Erwan and Schaffhauser, Florent},
     title = {Maximality of moduli spaces of vector bundles on curves},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2023.8793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.8793/}
}
TY  - JOUR
AU  - Brugallé, Erwan
AU  - Schaffhauser, Florent
TI  - Maximality of moduli spaces of vector bundles on curves
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.8793/
DO  - 10.46298/epiga.2023.8793
LA  - en
ID  - 10_46298_epiga_2023_8793
ER  - 
%0 Journal Article
%A Brugallé, Erwan
%A Schaffhauser, Florent
%T Maximality of moduli spaces of vector bundles on curves
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.8793/
%R 10.46298/epiga.2023.8793
%G en
%F 10_46298_epiga_2023_8793
Brugallé, Erwan; Schaffhauser, Florent. Maximality of moduli spaces of vector bundles on curves. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2023.8793

Cité par Sources :