On a decomposition of $p$-adic Coxeter orbits
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We analyze the geometry of some $p$-adic Deligne–Lusztig spaces $X_w(b)$ introduced in [Iva21] attached to an unramified reductive group ${\bf G}$ over a non-archimedean local field. We prove that when ${\bf G}$ is classical, $b$ basic and $w$ Coxeter, $X_w(b)$ decomposes as a disjoint union of translates of a certain integral $p$-adic Deligne–Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.
DOI : 10.46298/epiga.2023.8562
Classification : 14F20, 14M15, 20G25
@article{10_46298_epiga_2023_8562,
     author = {Ivanov, Alexander B.},
     title = {On a decomposition of $p$-adic {Coxeter} orbits},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.8562},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.8562/}
}
TY  - JOUR
AU  - Ivanov, Alexander B.
TI  - On a decomposition of $p$-adic Coxeter orbits
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.8562/
DO  - 10.46298/epiga.2023.8562
LA  - en
ID  - 10_46298_epiga_2023_8562
ER  - 
%0 Journal Article
%A Ivanov, Alexander B.
%T On a decomposition of $p$-adic Coxeter orbits
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.8562/
%R 10.46298/epiga.2023.8562
%G en
%F 10_46298_epiga_2023_8562
Ivanov, Alexander B. On a decomposition of $p$-adic Coxeter orbits. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.8562

Cité par Sources :