Triangular arrangements on the projective plane
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
In this work we study line arrangements consisting in lines passing through three non-aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement, which is a particular class of triangular arrangements. Among these Roots-of Unity-Arrangements, we provide conditions that ensure their freeness. Finally, we give two triangular arrangements having the same weak combinatorics, such that one is free but the other one is not.
@article{10_46298_epiga_2023_7323,
author = {Marchesi, Simone and Vall\`es, Jean},
title = {Triangular arrangements on the projective plane},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.7323},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.7323/}
}
TY - JOUR AU - Marchesi, Simone AU - Vallès, Jean TI - Triangular arrangements on the projective plane JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.7323/ DO - 10.46298/epiga.2023.7323 LA - en ID - 10_46298_epiga_2023_7323 ER -
Marchesi, Simone; Vallès, Jean. Triangular arrangements on the projective plane. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.7323
Cité par Sources :