Triangular arrangements on the projective plane
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

In this work we study line arrangements consisting in lines passing through three non-aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement, which is a particular class of triangular arrangements. Among these Roots-of Unity-Arrangements, we provide conditions that ensure their freeness. Finally, we give two triangular arrangements having the same weak combinatorics, such that one is free but the other one is not.
@article{10_46298_epiga_2023_7323,
     author = {Marchesi, Simone and Vall\`es, Jean},
     title = {Triangular arrangements on the projective plane},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.7323},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.7323/}
}
TY  - JOUR
AU  - Marchesi, Simone
AU  - Vallès, Jean
TI  - Triangular arrangements on the projective plane
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.7323/
DO  - 10.46298/epiga.2023.7323
LA  - en
ID  - 10_46298_epiga_2023_7323
ER  - 
%0 Journal Article
%A Marchesi, Simone
%A Vallès, Jean
%T Triangular arrangements on the projective plane
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.7323/
%R 10.46298/epiga.2023.7323
%G en
%F 10_46298_epiga_2023_7323
Marchesi, Simone; Vallès, Jean. Triangular arrangements on the projective plane. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.7323

Cité par Sources :