Finite $F$-representation type for homogeneous coordinate rings of non-Fano varieties
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

Finite $F$-representation type is an important notion in characteristic-$p$ commutative algebra, but explicit examples of varieties with or without this property are few. We prove that a large class of homogeneous coordinate rings in positive characteristic will fail to have finite $F$-representation type. To do so, we prove a connection between differential operators on the homogeneous coordinate ring of $X$ and the existence of global sections of a twist of $(\mathrm{Sym}^m \Omega_X)^\vee$. By results of Takagi and Takahashi, this allows us to rule out FFRT for coordinate rings of varieties with $(\mathrm{Sym}^m \Omega_X)^\vee$ not “positive”. By using results positivity and semistability conditions for the (co)tangent sheaves, we show that several classes of varieties fail to have finite $F$-representation type, including abelian varieties, most Calabi–Yau varieties, and complete intersections of general type. Our work also provides examples of the structure of the ring of differential operators for non-$F$-pure varieties, which to this point have largely been unexplored.
DOI : 10.46298/epiga.2023.10868
Classification : 13A35, 14F10, 14N10
@article{10_46298_epiga_2023_10868,
     author = {Mallory, Devlin},
     title = {Finite $F$-representation type for homogeneous coordinate rings of {non-Fano} varieties},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.10868},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10868/}
}
TY  - JOUR
AU  - Mallory, Devlin
TI  - Finite $F$-representation type for homogeneous coordinate rings of non-Fano varieties
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10868/
DO  - 10.46298/epiga.2023.10868
LA  - en
ID  - 10_46298_epiga_2023_10868
ER  - 
%0 Journal Article
%A Mallory, Devlin
%T Finite $F$-representation type for homogeneous coordinate rings of non-Fano varieties
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10868/
%R 10.46298/epiga.2023.10868
%G en
%F 10_46298_epiga_2023_10868
Mallory, Devlin. Finite $F$-representation type for homogeneous coordinate rings of non-Fano varieties. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.10868

Cité par Sources :