Remarks on the geometry of the variety of planes of a cubic fivefold
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
This note presents some properties of the variety of planes $F_2(X)\subset G(3,7)$ of a cubic $5$-fold $X\subset \mathbb P^6$. A cotangent bundle exact sequence is first derived from the remark made by Iliev and Manivel that $F_2(X)$ sits as a Lagrangian subvariety of the variety of lines of a cubic $4$-fold, which is a hyperplane section of $X$. Using the sequence, the Gauss map of $F_2(X)$ is then proven to be an embedding. The last section is devoted to the relation between the variety of osculating planes of a cubic $4$-fold and the variety of planes of the associated cyclic cubic $5$-fold.
@article{10_46298_epiga_2023_10806,
author = {Mboro, Ren\'e},
title = {Remarks on the geometry of the variety of planes of a cubic fivefold},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2023.10806},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10806/}
}
TY - JOUR AU - Mboro, René TI - Remarks on the geometry of the variety of planes of a cubic fivefold JO - Épijournal de Géométrie Algébrique PY - 2023 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10806/ DO - 10.46298/epiga.2023.10806 LA - en ID - 10_46298_epiga_2023_10806 ER -
Mboro, René. Remarks on the geometry of the variety of planes of a cubic fivefold. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.10806
Cité par Sources :