On algebraically coisotropic submanifolds of holomorphic symplectic manifolds
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)

Voir la notice de l'article provenant de la source Episciences

We investigate algebraically coisotropic submanifolds $X$ in a holomorphic symplectic projective manifold $M$. Motivated by our results in the hypersurface case, we raise the following question: when $X$ is not uniruled, is it true that up to a finite étale cover, the pair $(X,M)$ is a product $(Z\times Y, N\times Y)$ where $N, Y$ are holomorphic symplectic and $Z\subset N$ is Lagrangian? We prove that this is indeed the case when $M$ is an abelian variety, and give some partial answer when the canonical bundle $K_X$ is semi-ample. In particular, when $K_X$ is nef and big, $X$ is Lagrangian in $M$ (in fact this also holds without nefness assumption). We also remark that Lagrangian submanifolds do not exist on a sufficiently general Abelian variety, in contrast to the case when $M$ is irreducible hyperk"ahler.
DOI : 10.46298/epiga.2023.10493
Classification : 14J42, 14K12, 53D12
@article{10_46298_epiga_2023_10493,
     author = {Amerik, Ekaterina and Campana, Fr\'ed\'eric},
     title = {On algebraically coisotropic submanifolds of holomorphic symplectic manifolds},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.46298/epiga.2023.10493},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10493/}
}
TY  - JOUR
AU  - Amerik, Ekaterina
AU  - Campana, Frédéric
TI  - On algebraically coisotropic submanifolds of holomorphic symplectic manifolds
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10493/
DO  - 10.46298/epiga.2023.10493
LA  - en
ID  - 10_46298_epiga_2023_10493
ER  - 
%0 Journal Article
%A Amerik, Ekaterina
%A Campana, Frédéric
%T On algebraically coisotropic submanifolds of holomorphic symplectic manifolds
%J Épijournal de Géométrie Algébrique
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10493/
%R 10.46298/epiga.2023.10493
%G en
%F 10_46298_epiga_2023_10493
Amerik, Ekaterina; Campana, Frédéric. On algebraically coisotropic submanifolds of holomorphic symplectic manifolds. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.10493

Cité par Sources :