Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)

Voir la notice de l'article provenant de la source Episciences

To each complex composition algebra $\mathbb{A}$, there associates a projective symmetric manifold $X(\mathbb{A})$ of Picard number one, which is just a smooth hyperplane section of the following varieties ${\rm Lag}(3,6), {\rm Gr}(3,6), \mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these varieties are rigid, namely for any smooth family of projective manifolds over a connected base, if one fiber is isomorphic to $X(\mathbb{A})$, then every fiber is isomorphic to $X(\mathbb{A})$.
DOI : 10.46298/epiga.2023.10432
Classification : 14J45, 14M27, 32G10
@article{10_46298_epiga_2023_10432,
     author = {Chen, Yifei and Fu, Baohua and Li, Qifeng},
     title = {Rigidity of projective symmetric manifolds of {Picard} number 1 associated to composition algebras},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.46298/epiga.2023.10432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10432/}
}
TY  - JOUR
AU  - Chen, Yifei
AU  - Fu, Baohua
AU  - Li, Qifeng
TI  - Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10432/
DO  - 10.46298/epiga.2023.10432
LA  - en
ID  - 10_46298_epiga_2023_10432
ER  - 
%0 Journal Article
%A Chen, Yifei
%A Fu, Baohua
%A Li, Qifeng
%T Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras
%J Épijournal de Géométrie Algébrique
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10432/
%R 10.46298/epiga.2023.10432
%G en
%F 10_46298_epiga_2023_10432
Chen, Yifei; Fu, Baohua; Li, Qifeng. Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.10432

Cité par Sources :