Chow groups of surfaces of lines in cubic fourfolds
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)
Voir la notice de l'article provenant de la source Episciences
The surface of lines in a cubic fourfold intersecting a fixed line splits motivically into two parts, one of which resembles a K3 surface. We define the analogue of the Beauville-Voisin class and study the push-forward map to the Fano variety of all lines with respect to the natural splitting of the Bloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.
@article{10_46298_epiga_2023_10425,
author = {Huybrechts, Daniel},
title = {Chow groups of surfaces of lines in cubic fourfolds},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
year = {2023},
doi = {10.46298/epiga.2023.10425},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10425/}
}
Huybrechts, Daniel. Chow groups of surfaces of lines in cubic fourfolds. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.10425
Cité par Sources :