Chow groups of surfaces of lines in cubic fourfolds
Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023)

Voir la notice de l'article provenant de la source Episciences

The surface of lines in a cubic fourfold intersecting a fixed line splits motivically into two parts, one of which resembles a K3 surface. We define the analogue of the Beauville-Voisin class and study the push-forward map to the Fano variety of all lines with respect to the natural splitting of the Bloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.
DOI : 10.46298/epiga.2023.10425
Classification : 14C15, 14J28, 14J29, 14J70
@article{10_46298_epiga_2023_10425,
     author = {Huybrechts, Daniel},
     title = {Chow groups of surfaces of lines in cubic fourfolds},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.46298/epiga.2023.10425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10425/}
}
TY  - JOUR
AU  - Huybrechts, Daniel
TI  - Chow groups of surfaces of lines in cubic fourfolds
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10425/
DO  - 10.46298/epiga.2023.10425
LA  - en
ID  - 10_46298_epiga_2023_10425
ER  - 
%0 Journal Article
%A Huybrechts, Daniel
%T Chow groups of surfaces of lines in cubic fourfolds
%J Épijournal de Géométrie Algébrique
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10425/
%R 10.46298/epiga.2023.10425
%G en
%F 10_46298_epiga_2023_10425
Huybrechts, Daniel. Chow groups of surfaces of lines in cubic fourfolds. Épijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (2023). doi: 10.46298/epiga.2023.10425

Cité par Sources :