Cohomology of moduli spaces via a result of Chenevier and Lannes
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
We use a classification result of Chenevier and Lannes for algebraic automorphic representations together with a conjectural correspondence with $\ell$-adic absolute Galois representations to determine the Euler characteristics (with values in the Grothendieck group of such representations) of $\overline{\mathcal M}_{3,n}$ and $\mathcal M_{3,n}$ for $n \leq 14$ and of local systems $\mathbb{V}_{\lambda}$ on $\mathcal{A}_3$ for $|\lambda| \leq 16$.
@article{10_46298_epiga_2023_10307,
author = {Bergstr\"om, Jonas and Faber, Carel},
title = {Cohomology of moduli spaces via a result of {Chenevier} and {Lannes}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.10307},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10307/}
}
TY - JOUR AU - Bergström, Jonas AU - Faber, Carel TI - Cohomology of moduli spaces via a result of Chenevier and Lannes JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10307/ DO - 10.46298/epiga.2023.10307 LA - en ID - 10_46298_epiga_2023_10307 ER -
%0 Journal Article %A Bergström, Jonas %A Faber, Carel %T Cohomology of moduli spaces via a result of Chenevier and Lannes %J Épijournal de Géométrie Algébrique %D 2023 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10307/ %R 10.46298/epiga.2023.10307 %G en %F 10_46298_epiga_2023_10307
Bergström, Jonas; Faber, Carel. Cohomology of moduli spaces via a result of Chenevier and Lannes. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.10307
Cité par Sources :