Cohomology of moduli spaces via a result of Chenevier and Lannes
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We use a classification result of Chenevier and Lannes for algebraic automorphic representations together with a conjectural correspondence with $\ell$-adic absolute Galois representations to determine the Euler characteristics (with values in the Grothendieck group of such representations) of $\overline{\mathcal M}_{3,n}$ and $\mathcal M_{3,n}$ for $n \leq 14$ and of local systems $\mathbb{V}_{\lambda}$ on $\mathcal{A}_3$ for $|\lambda| \leq 16$.
DOI : 10.46298/epiga.2023.10307
Classification : 11F46, 11F80, 14H10, 14K10
@article{10_46298_epiga_2023_10307,
     author = {Bergstr\"om, Jonas and Faber, Carel},
     title = {Cohomology of moduli spaces via a result of {Chenevier} and {Lannes}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.10307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10307/}
}
TY  - JOUR
AU  - Bergström, Jonas
AU  - Faber, Carel
TI  - Cohomology of moduli spaces via a result of Chenevier and Lannes
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10307/
DO  - 10.46298/epiga.2023.10307
LA  - en
ID  - 10_46298_epiga_2023_10307
ER  - 
%0 Journal Article
%A Bergström, Jonas
%A Faber, Carel
%T Cohomology of moduli spaces via a result of Chenevier and Lannes
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10307/
%R 10.46298/epiga.2023.10307
%G en
%F 10_46298_epiga_2023_10307
Bergström, Jonas; Faber, Carel. Cohomology of moduli spaces via a result of Chenevier and Lannes. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.10307

Cité par Sources :