Torus Actions on Quotients of Affine Spaces
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We study the locus of fixed points of a torus action on a GIT quotient of a complex vector space by a reductive complex algebraic group which acts linearly. We show that, under the assumption that $G$ acts freely on the stable locus, the components of the fixed point locus are again GIT quotients of linear subspaces by Levi subgroups.
DOI : 10.46298/epiga.2023.10073
Classification : 14L24, 14L30
@article{10_46298_epiga_2023_10073,
     author = {Brecan, Ana-Maria and Franzen, Hans},
     title = {Torus {Actions} on {Quotients} of {Affine} {Spaces}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2023.10073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10073/}
}
TY  - JOUR
AU  - Brecan, Ana-Maria
AU  - Franzen, Hans
TI  - Torus Actions on Quotients of Affine Spaces
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10073/
DO  - 10.46298/epiga.2023.10073
LA  - en
ID  - 10_46298_epiga_2023_10073
ER  - 
%0 Journal Article
%A Brecan, Ana-Maria
%A Franzen, Hans
%T Torus Actions on Quotients of Affine Spaces
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10073/
%R 10.46298/epiga.2023.10073
%G en
%F 10_46298_epiga_2023_10073
Brecan, Ana-Maria; Franzen, Hans. Torus Actions on Quotients of Affine Spaces. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.10073

Cité par Sources :