Torus Actions on Quotients of Affine Spaces
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
We study the locus of fixed points of a torus action on a GIT quotient of a complex vector space by a reductive complex algebraic group which acts linearly. We show that, under the assumption that $G$ acts freely on the stable locus, the components of the fixed point locus are again GIT quotients of linear subspaces by Levi subgroups.
@article{10_46298_epiga_2023_10073,
author = {Brecan, Ana-Maria and Franzen, Hans},
title = {Torus {Actions} on {Quotients} of {Affine} {Spaces}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2023.10073},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10073/}
}
TY - JOUR AU - Brecan, Ana-Maria AU - Franzen, Hans TI - Torus Actions on Quotients of Affine Spaces JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2023.10073/ DO - 10.46298/epiga.2023.10073 LA - en ID - 10_46298_epiga_2023_10073 ER -
Brecan, Ana-Maria; Franzen, Hans. Torus Actions on Quotients of Affine Spaces. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2023.10073
Cité par Sources :