A gluing construction of projective K3 surfaces
    
    
  
  
  
      
      
      
        
Épijournal de Géométrie Algébrique, Tome 6 (2022)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Episciences
            
              We construct a non-Kummer projective K3 surface $X$ which admits compact Levi-flats by holomorphically patching two open complex surfaces obtained as the complements of tubular neighborhoods of elliptic curves embedded in blow-ups of the projective plane at nine general points.
            
            
            
          
        
      @article{10_46298_epiga_2022_volume6_8504,
     author = {Koike, Takayuki and Uehara, Takato},
     title = {A gluing construction of projective {K3} surfaces},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.volume6.8504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.8504/}
}
                      
                      
                    TY - JOUR AU - Koike, Takayuki AU - Uehara, Takato TI - A gluing construction of projective K3 surfaces JO - Épijournal de Géométrie Algébrique PY - 2022 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.8504/ DO - 10.46298/epiga.2022.volume6.8504 LA - en ID - 10_46298_epiga_2022_volume6_8504 ER -
%0 Journal Article %A Koike, Takayuki %A Uehara, Takato %T A gluing construction of projective K3 surfaces %J Épijournal de Géométrie Algébrique %D 2022 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.8504/ %R 10.46298/epiga.2022.volume6.8504 %G en %F 10_46298_epiga_2022_volume6_8504
Koike, Takayuki; Uehara, Takato. A gluing construction of projective K3 surfaces. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.volume6.8504
Cité par Sources :