A gluing construction of projective K3 surfaces
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We construct a non-Kummer projective K3 surface $X$ which admits compact Levi-flats by holomorphically patching two open complex surfaces obtained as the complements of tubular neighborhoods of elliptic curves embedded in blow-ups of the projective plane at nine general points.
@article{10_46298_epiga_2022_volume6_8504,
     author = {Koike, Takayuki and Uehara, Takato},
     title = {A gluing construction of projective {K3} surfaces},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.volume6.8504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.8504/}
}
TY  - JOUR
AU  - Koike, Takayuki
AU  - Uehara, Takato
TI  - A gluing construction of projective K3 surfaces
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.8504/
DO  - 10.46298/epiga.2022.volume6.8504
LA  - en
ID  - 10_46298_epiga_2022_volume6_8504
ER  - 
%0 Journal Article
%A Koike, Takayuki
%A Uehara, Takato
%T A gluing construction of projective K3 surfaces
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.8504/
%R 10.46298/epiga.2022.volume6.8504
%G en
%F 10_46298_epiga_2022_volume6_8504
Koike, Takayuki; Uehara, Takato. A gluing construction of projective K3 surfaces. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.volume6.8504

Cité par Sources :