Integral cohomology of quotients via toric geometry
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We describe the integral cohomology of $X/G$ where $X$ is a compact complex manifold and $G$ a cyclic group of prime order with only isolated fixed points. As a preliminary step, we investigate the integral cohomology of toric blow-ups of quotients of $\mathbb{C}^n$. We also provide necessary and sufficient conditions for the spectral sequence of equivariant cohomology of $(X,G)$ to degenerate at the second page. As an application, we compute the Beauville–Bogomolov form of $X/G$ when $X$ is a Hilbert scheme of points on a K3 surface and $G$ a symplectic automorphism group of orders 5 or 7.
DOI : 10.46298/epiga.2022.volume6.5762
Classification : 14F43, 14L30, 14M25, 53C26, 55N10
@article{10_46298_epiga_2022_volume6_5762,
     author = {Menet, Gr\'egoire},
     title = {Integral cohomology of quotients via toric geometry},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.volume6.5762},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.5762/}
}
TY  - JOUR
AU  - Menet, Grégoire
TI  - Integral cohomology of quotients via toric geometry
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.5762/
DO  - 10.46298/epiga.2022.volume6.5762
LA  - en
ID  - 10_46298_epiga_2022_volume6_5762
ER  - 
%0 Journal Article
%A Menet, Grégoire
%T Integral cohomology of quotients via toric geometry
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.volume6.5762/
%R 10.46298/epiga.2022.volume6.5762
%G en
%F 10_46298_epiga_2022_volume6_5762
Menet, Grégoire. Integral cohomology of quotients via toric geometry. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.volume6.5762

Cité par Sources :