Uniform K-stability of polarized spherical varieties
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
We express notions of K-stability of polarized spherical varieties in terms of combinatorial data, vastly generalizing the case of toric varieties. We then provide a combinatorial sufficient condition of G-uniform K-stability by studying the corresponding convex geometric problem. Thanks to recent work of Chi Li and a remark by Yuji Odaka, this provides an explicitly checkable sufficient condition of existence of constant scalar curvature Kahler metrics. As a side effect, we show that, on several families of spherical varieties, G-uniform K-stability is equivalent to K-polystability with respect to G-equivariant test configurations for polarizations close to the anticanonical bundle.
@article{10_46298_epiga_2022_9959,
author = {Delcroix, Thibaut},
title = {Uniform {K-stability} of polarized spherical varieties},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2022.9959},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9959/}
}
TY - JOUR AU - Delcroix, Thibaut TI - Uniform K-stability of polarized spherical varieties JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9959/ DO - 10.46298/epiga.2022.9959 LA - en ID - 10_46298_epiga_2022_9959 ER -
Delcroix, Thibaut. Uniform K-stability of polarized spherical varieties. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2022.9959
Cité par Sources :