On the motive of O'Grady's six dimensional hyper-Kähler varieties
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

We prove that the rational Chow motive of a six dimensional hyper-K"ahler variety obtained as symplectic resolution of O'Grady type of a singular moduli space of semistable sheaves on an abelian surface $A$ belongs to the tensor category of motives generated by the motive of $A$. We in fact give a formula for the rational Chow motive of such a variety in terms of that of the surface. As a consequence, the conjectures of Hodge and Tate hold for many hyper-K"ahler varieties of OG6-type.
DOI : 10.46298/epiga.2022.9758
Classification : 14C15, 14C30, 14D20, 14J42
@article{10_46298_epiga_2022_9758,
     author = {Floccari, Salvatore},
     title = {On the motive of {O'Grady's} six dimensional {hyper-K\"ahler} varieties},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2022.9758},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9758/}
}
TY  - JOUR
AU  - Floccari, Salvatore
TI  - On the motive of O'Grady's six dimensional hyper-Kähler varieties
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9758/
DO  - 10.46298/epiga.2022.9758
LA  - en
ID  - 10_46298_epiga_2022_9758
ER  - 
%0 Journal Article
%A Floccari, Salvatore
%T On the motive of O'Grady's six dimensional hyper-Kähler varieties
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9758/
%R 10.46298/epiga.2022.9758
%G en
%F 10_46298_epiga_2022_9758
Floccari, Salvatore. On the motive of O'Grady's six dimensional hyper-Kähler varieties. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2022.9758

Cité par Sources :