On the motive of O'Grady's six dimensional hyper-Kähler varieties
Épijournal de Géométrie Algébrique, Tome 7 (2023)
Voir la notice de l'article provenant de la source Episciences
We prove that the rational Chow motive of a six dimensional hyper-K"ahler variety obtained as symplectic resolution of O'Grady type of a singular moduli space of semistable sheaves on an abelian surface $A$ belongs to the tensor category of motives generated by the motive of $A$. We in fact give a formula for the rational Chow motive of such a variety in terms of that of the surface. As a consequence, the conjectures of Hodge and Tate hold for many hyper-K"ahler varieties of OG6-type.
@article{10_46298_epiga_2022_9758,
author = {Floccari, Salvatore},
title = {On the motive of {O'Grady's} six dimensional {hyper-K\"ahler} varieties},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {7},
year = {2023},
doi = {10.46298/epiga.2022.9758},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9758/}
}
TY - JOUR AU - Floccari, Salvatore TI - On the motive of O'Grady's six dimensional hyper-Kähler varieties JO - Épijournal de Géométrie Algébrique PY - 2023 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.9758/ DO - 10.46298/epiga.2022.9758 LA - en ID - 10_46298_epiga_2022_9758 ER -
Floccari, Salvatore. On the motive of O'Grady's six dimensional hyper-Kähler varieties. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2022.9758
Cité par Sources :