Quartic surfaces, their bitangents and rational points
Épijournal de Géométrie Algébrique, Tome 7 (2023)

Voir la notice de l'article provenant de la source Episciences

Let X be a smooth quartic surface not containing lines, defined over a number field K. We prove that there are only finitely many bitangents to X which are defined over K. This result can be interpreted as saying that a certain surface, having vanishing irregularity, contains only finitely many rational points. In our proof, we use the geometry of lines of the quartic double solid associated to X. In a somewhat opposite direction, we show that on any quartic surface X over a number field K, the set of algebraic points in X(K) which are quadratic over a suitable finite extension K' of K is Zariski-dense.
DOI : 10.46298/epiga.2022.8987
Classification : 11D99, 14G05
@article{10_46298_epiga_2022_8987,
     author = {Corvaja, Pietro and Zucconi, Francesco},
     title = {Quartic surfaces, their bitangents and rational points},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {7},
     year = {2023},
     doi = {10.46298/epiga.2022.8987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8987/}
}
TY  - JOUR
AU  - Corvaja, Pietro
AU  - Zucconi, Francesco
TI  - Quartic surfaces, their bitangents and rational points
JO  - Épijournal de Géométrie Algébrique
PY  - 2023
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8987/
DO  - 10.46298/epiga.2022.8987
LA  - en
ID  - 10_46298_epiga_2022_8987
ER  - 
%0 Journal Article
%A Corvaja, Pietro
%A Zucconi, Francesco
%T Quartic surfaces, their bitangents and rational points
%J Épijournal de Géométrie Algébrique
%D 2023
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8987/
%R 10.46298/epiga.2022.8987
%G en
%F 10_46298_epiga_2022_8987
Corvaja, Pietro; Zucconi, Francesco. Quartic surfaces, their bitangents and rational points. Épijournal de Géométrie Algébrique, Tome 7 (2023). doi: 10.46298/epiga.2022.8987

Cité par Sources :