The behavior of essential dimension under specialization
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

Let $A$ be a discrete valuation ring with generic point $\eta$ and closed point $s$. We show that in a family of torsors over $\operatorname{Spec}(A)$, the essential dimension of the torsor above $s$ is less than or equal to the essential dimension of the torsor above $\eta$. We give two applications of this result, one in mixed characteristic, the other in equal characteristic.
DOI : 10.46298/epiga.2022.8910
Classification : 13A18, 14L30, 20G10, 20G15
@article{10_46298_epiga_2022_8910,
     author = {Reichstein, Zinovy and Scavia, Federico},
     title = {The behavior of essential dimension under specialization},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.8910},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8910/}
}
TY  - JOUR
AU  - Reichstein, Zinovy
AU  - Scavia, Federico
TI  - The behavior of essential dimension under specialization
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8910/
DO  - 10.46298/epiga.2022.8910
LA  - en
ID  - 10_46298_epiga_2022_8910
ER  - 
%0 Journal Article
%A Reichstein, Zinovy
%A Scavia, Federico
%T The behavior of essential dimension under specialization
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8910/
%R 10.46298/epiga.2022.8910
%G en
%F 10_46298_epiga_2022_8910
Reichstein, Zinovy; Scavia, Federico. The behavior of essential dimension under specialization. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.8910

Cité par Sources :