Chern currents of coherent sheaves
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

Given a finite locally free resolution of a coherent analytic sheaf $\mathcal F$, equipped with Hermitian metrics and connections, we construct an explicit current, obtained as the limit of certain smooth Chern forms of $\mathcal F$, that represents the Chern class of $\mathcal F$ and has support on the support of $\mathcal F$. If the connections are $(1,0)$-connections and $\mathcal F$ has pure dimension, then the first nontrivial component of this Chern current coincides with (a constant times) the fundamental cycle of $\mathcal F$. The proof of this goes through a generalized Poincaré-Lelong formula, previously obtained by the authors, and a result that relates the Chern current to the residue current associated with the locally free resolution.
DOI : 10.46298/epiga.2022.8653
Classification : 14C17, 14F06, 32A27, 32C30, 53C05
@article{10_46298_epiga_2022_8653,
     author = {L\"ark\"ang, Richard and Wulcan, Elizabeth},
     title = {Chern currents of coherent sheaves},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.8653},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8653/}
}
TY  - JOUR
AU  - Lärkäng, Richard
AU  - Wulcan, Elizabeth
TI  - Chern currents of coherent sheaves
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8653/
DO  - 10.46298/epiga.2022.8653
LA  - en
ID  - 10_46298_epiga_2022_8653
ER  - 
%0 Journal Article
%A Lärkäng, Richard
%A Wulcan, Elizabeth
%T Chern currents of coherent sheaves
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8653/
%R 10.46298/epiga.2022.8653
%G en
%F 10_46298_epiga_2022_8653
Lärkäng, Richard; Wulcan, Elizabeth. Chern currents of coherent sheaves. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.8653

Cité par Sources :