A conjectural formula for $DR_g(a,-a) \lambda_g$
Épijournal de Géométrie Algébrique, Tome 6 (2022)
Voir la notice de l'article provenant de la source Episciences
We propose a conjectural formula for $DR_g(a,-a) \lambda_g$ and check all its expected properties. Our formula refines the one point case of a similar conjecture made by the first named author in collaboration with Guéré and Rossi, and we prove that the two conjectures are in fact equivalent, though in a quite non-trivial way.
@article{10_46298_epiga_2022_8595,
author = {Buryak, Alexandr and Iglesias, Francisco Hern\'andez and Shadrin, Sergey},
title = {A conjectural formula for $DR_g(a,-a) \lambda_g$},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {6},
year = {2022},
doi = {10.46298/epiga.2022.8595},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8595/}
}
TY - JOUR AU - Buryak, Alexandr AU - Iglesias, Francisco Hernández AU - Shadrin, Sergey TI - A conjectural formula for $DR_g(a,-a) \lambda_g$ JO - Épijournal de Géométrie Algébrique PY - 2022 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8595/ DO - 10.46298/epiga.2022.8595 LA - en ID - 10_46298_epiga_2022_8595 ER -
%0 Journal Article %A Buryak, Alexandr %A Iglesias, Francisco Hernández %A Shadrin, Sergey %T A conjectural formula for $DR_g(a,-a) \lambda_g$ %J Épijournal de Géométrie Algébrique %D 2022 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8595/ %R 10.46298/epiga.2022.8595 %G en %F 10_46298_epiga_2022_8595
Buryak, Alexandr; Iglesias, Francisco Hernández; Shadrin, Sergey. A conjectural formula for $DR_g(a,-a) \lambda_g$. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.8595
Cité par Sources :