A conjectural formula for $DR_g(a,-a) \lambda_g$
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We propose a conjectural formula for $DR_g(a,-a) \lambda_g$ and check all its expected properties. Our formula refines the one point case of a similar conjecture made by the first named author in collaboration with Guéré and Rossi, and we prove that the two conjectures are in fact equivalent, though in a quite non-trivial way.
DOI : 10.46298/epiga.2022.8595
Classification : 14H10
@article{10_46298_epiga_2022_8595,
     author = {Buryak, Alexandr and Iglesias, Francisco Hern\'andez and Shadrin, Sergey},
     title = {A conjectural formula for $DR_g(a,-a) \lambda_g$},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.8595},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8595/}
}
TY  - JOUR
AU  - Buryak, Alexandr
AU  - Iglesias, Francisco Hernández
AU  - Shadrin, Sergey
TI  - A conjectural formula for $DR_g(a,-a) \lambda_g$
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8595/
DO  - 10.46298/epiga.2022.8595
LA  - en
ID  - 10_46298_epiga_2022_8595
ER  - 
%0 Journal Article
%A Buryak, Alexandr
%A Iglesias, Francisco Hernández
%A Shadrin, Sergey
%T A conjectural formula for $DR_g(a,-a) \lambda_g$
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.8595/
%R 10.46298/epiga.2022.8595
%G en
%F 10_46298_epiga_2022_8595
Buryak, Alexandr; Iglesias, Francisco Hernández; Shadrin, Sergey. A conjectural formula for $DR_g(a,-a) \lambda_g$. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.8595

Cité par Sources :