Finite torsors over strongly $F$-regular singularities
Épijournal de Géométrie Algébrique, Tome 6 (2022)
Voir la notice de l'article provenant de la source Episciences
We investigate finite torsors over big opens of spectra of strongly $F$-regular germs that do not extend to torsors over the whole spectrum. Let $(R,\mathfrak{m},k)$ be a strongly $F$-regular $k$-germ where $k$ is an algebraically closed field of characteristic $p>0$. We prove the existence of a finite local cover $R \subset R^{\star}$ so that $R^{\star}$ is a strongly $F$-regular $k$-germ and: for all finite algebraic groups $G/k$ with solvable neutral component, every $G$-torsor over a big open of $\mathrm{Spec} R^{\star}$ extends to a $G$-torsor everywhere. To achieve this, we obtain a generalized transformation rule for the $F$-signature under finite local extensions. Such formula is used to show that that the torsion of $\mathrm{Cl} R$ is bounded by $1/s(R)$. By taking cones, we conclude that the Picard group of globally $F$-regular varieties is torsion-free. Likewise, it shows that canonical covers of $\mathbb{Q}$-Gorenstein strongly $F$-regular singularities are strongly $F$-regular.
@article{10_46298_epiga_2022_7532,
author = {Carvajal-Rojas, Javier},
title = {Finite torsors over strongly $F$-regular singularities},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {6},
year = {2022},
doi = {10.46298/epiga.2022.7532},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7532/}
}
TY - JOUR AU - Carvajal-Rojas, Javier TI - Finite torsors over strongly $F$-regular singularities JO - Épijournal de Géométrie Algébrique PY - 2022 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7532/ DO - 10.46298/epiga.2022.7532 LA - en ID - 10_46298_epiga_2022_7532 ER -
Carvajal-Rojas, Javier. Finite torsors over strongly $F$-regular singularities. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.7532
Cité par Sources :