Finite torsors over strongly $F$-regular singularities
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We investigate finite torsors over big opens of spectra of strongly $F$-regular germs that do not extend to torsors over the whole spectrum. Let $(R,\mathfrak{m},k)$ be a strongly $F$-regular $k$-germ where $k$ is an algebraically closed field of characteristic $p>0$. We prove the existence of a finite local cover $R \subset R^{\star}$ so that $R^{\star}$ is a strongly $F$-regular $k$-germ and: for all finite algebraic groups $G/k$ with solvable neutral component, every $G$-torsor over a big open of $\mathrm{Spec} R^{\star}$ extends to a $G$-torsor everywhere. To achieve this, we obtain a generalized transformation rule for the $F$-signature under finite local extensions. Such formula is used to show that that the torsion of $\mathrm{Cl} R$ is bounded by $1/s(R)$. By taking cones, we conclude that the Picard group of globally $F$-regular varieties is torsion-free. Likewise, it shows that canonical covers of $\mathbb{Q}$-Gorenstein strongly $F$-regular singularities are strongly $F$-regular.
DOI : 10.46298/epiga.2022.7532
Classification : 13A35, 13A50, 14F35, 14G17, 14L15, 16T05
@article{10_46298_epiga_2022_7532,
     author = {Carvajal-Rojas, Javier},
     title = {Finite torsors over strongly $F$-regular singularities},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.7532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7532/}
}
TY  - JOUR
AU  - Carvajal-Rojas, Javier
TI  - Finite torsors over strongly $F$-regular singularities
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7532/
DO  - 10.46298/epiga.2022.7532
LA  - en
ID  - 10_46298_epiga_2022_7532
ER  - 
%0 Journal Article
%A Carvajal-Rojas, Javier
%T Finite torsors over strongly $F$-regular singularities
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7532/
%R 10.46298/epiga.2022.7532
%G en
%F 10_46298_epiga_2022_7532
Carvajal-Rojas, Javier. Finite torsors over strongly $F$-regular singularities. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.7532

Cité par Sources :