Néron models of Jacobians over bases of arbitrary dimension
Épijournal de Géométrie Algébrique, Tome 6 (2022)
Voir la notice de l'article provenant de la source Episciences
We work with a smooth relative curve $X_U/U$ with nodal reduction over an excellent and locally factorial scheme $S$. We show that blowing up a nodal model of $X_U$ in the ideal sheaf of a section yields a new nodal model, and describe how these models relate to each other. We construct a Néron model for the Jacobian of $X_U$, and describe it locally on $S$ as a quotient of the Picard space of a well-chosen nodal model. We provide a combinatorial criterion for the Néron model to be separated.
@article{10_46298_epiga_2022_7340,
author = {Poiret, Thibault},
title = {N\'eron models of {Jacobians} over bases of arbitrary dimension},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {6},
year = {2022},
doi = {10.46298/epiga.2022.7340},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7340/}
}
TY - JOUR AU - Poiret, Thibault TI - Néron models of Jacobians over bases of arbitrary dimension JO - Épijournal de Géométrie Algébrique PY - 2022 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7340/ DO - 10.46298/epiga.2022.7340 LA - en ID - 10_46298_epiga_2022_7340 ER -
Poiret, Thibault. Néron models of Jacobians over bases of arbitrary dimension. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.7340
Cité par Sources :