Automorphism group schemes of bielliptic and quasi-bielliptic surfaces
    
    
  
  
  
      
      
      
        
Épijournal de Géométrie Algébrique, Tome 6 (2022)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Episciences
            
              Bielliptic and quasi-bielliptic surfaces form one of the four classes of minimal smooth projective surfaces of Kodaira dimension $0$. In this article, we determine the automorphism schemes of these surfaces over algebraically closed fields of arbitrary characteristic, generalizing work of Bennett and Miranda over the complex numbers; we also find some cases that are missing from the classification of automorphism groups of bielliptic surfaces in characteristic $0$.
            
            
            
          
        
      @article{10_46298_epiga_2022_7317,
     author = {Martin, Gebhard},
     title = {Automorphism group schemes of bielliptic and quasi-bielliptic surfaces},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.7317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7317/}
}
                      
                      
                    TY - JOUR AU - Martin, Gebhard TI - Automorphism group schemes of bielliptic and quasi-bielliptic surfaces JO - Épijournal de Géométrie Algébrique PY - 2022 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7317/ DO - 10.46298/epiga.2022.7317 LA - en ID - 10_46298_epiga_2022_7317 ER -
%0 Journal Article %A Martin, Gebhard %T Automorphism group schemes of bielliptic and quasi-bielliptic surfaces %J Épijournal de Géométrie Algébrique %D 2022 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.7317/ %R 10.46298/epiga.2022.7317 %G en %F 10_46298_epiga_2022_7317
Martin, Gebhard. Automorphism group schemes of bielliptic and quasi-bielliptic surfaces. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.7317
Cité par Sources :