$G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta products
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

Let $X$ be a complex $K3$ surface with an effective action of a group $G$ which preserves the holomorphic symplectic form. Let $$ Z_{X,G}(q) = \sum_{n=0}^{\infty} e\left(\operatorname{Hilb}^{n}(X)^{G} \right)\, q^{n-1} $$ be the generating function for the Euler characteristics of the Hilbert schemes of $G$-invariant length $n$ subschemes. We show that its reciprocal, $Z_{X,G}(q)^{-1}$ is the Fourier expansion of a modular cusp form of weight $\frac{1}{2} e(X/G)$ for the congruence subgroup $\Gamma_{0}(|G|)$. We give an explicit formula for $Z_{X,G}$ in terms of the Dedekind eta function for all 82 possible $(X,G)$. The key intermediate result we prove is of independent interest: it establishes an eta product identity for a certain shifted theta function of the root lattice of a simply laced root system. We extend our results to various refinements of the Euler characteristic, namely the Elliptic genus, the Chi-$y$ genus, and the motivic class.
DOI : 10.46298/epiga.2022.6986
Classification : 11F30, 14C05, 14J28, 14J42
@article{10_46298_epiga_2022_6986,
     author = {Bryan, Jim and Gyenge, \'Ad\'am},
     title = {$G$-fixed {Hilbert} schemes on $K3$ surfaces, modular forms, and eta products},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.6986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6986/}
}
TY  - JOUR
AU  - Bryan, Jim
AU  - Gyenge, Ádám
TI  - $G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta products
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6986/
DO  - 10.46298/epiga.2022.6986
LA  - en
ID  - 10_46298_epiga_2022_6986
ER  - 
%0 Journal Article
%A Bryan, Jim
%A Gyenge, Ádám
%T $G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta products
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6986/
%R 10.46298/epiga.2022.6986
%G en
%F 10_46298_epiga_2022_6986
Bryan, Jim; Gyenge, Ádám. $G$-fixed Hilbert schemes on $K3$ surfaces, modular forms, and eta products. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.6986

Cité par Sources :