Walls and asymptotics for Bridgeland stability conditions on 3-folds
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We consider Bridgeland stability conditions for three-folds conjectured by Bayer-Macrì-Toda in the case of Picard rank one. We study the differential geometry of numerical walls, characterizing when they are bounded, discussing possible intersections, and showing that they are essentially regular. Next, we prove that walls within a certain region of the upper half plane that parametrizes geometric stability conditions must always intersect the curve given by the vanishing of the slope function and, for a fixed value of s, have a maximum turning point there. We then use all of these facts to prove that Gieseker semistability is equivalent to asymptotic semistability along a class of paths in the upper half plane, and to show how to find large families of walls. We illustrate how to compute all of the walls and describe the Bridgeland moduli spaces for the Chern character (2,0,-1,0) on complex projective 3-space in a suitable region of the upper half plane.
DOI : 10.46298/epiga.2022.6819
Classification : 14D20, 14F08, 14J30, 18G80
@article{10_46298_epiga_2022_6819,
     author = {Jardim, Marcos and Maciocia, Antony},
     title = {Walls and asymptotics for {Bridgeland} stability conditions on 3-folds},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.6819},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6819/}
}
TY  - JOUR
AU  - Jardim, Marcos
AU  - Maciocia, Antony
TI  - Walls and asymptotics for Bridgeland stability conditions on 3-folds
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6819/
DO  - 10.46298/epiga.2022.6819
LA  - en
ID  - 10_46298_epiga_2022_6819
ER  - 
%0 Journal Article
%A Jardim, Marcos
%A Maciocia, Antony
%T Walls and asymptotics for Bridgeland stability conditions on 3-folds
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6819/
%R 10.46298/epiga.2022.6819
%G en
%F 10_46298_epiga_2022_6819
Jardim, Marcos; Maciocia, Antony. Walls and asymptotics for Bridgeland stability conditions on 3-folds. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.6819

Cité par Sources :