Density of Arithmetic Representations of Function Fields
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We propose a conjecture on the density of arithmetic points in the deformation space of representations of the étale fundamental group in positive characteristic. This? conjecture has applications to étale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus \{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in Epiga.
DOI : 10.46298/epiga.2022.6568
Classification : 11G99, 14G99
@article{10_46298_epiga_2022_6568,
     author = {Esnault, H\'el\`ene and Kerz, Moritz},
     title = {Density of {Arithmetic} {Representations} of {Function} {Fields}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.6568},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6568/}
}
TY  - JOUR
AU  - Esnault, Hélène
AU  - Kerz, Moritz
TI  - Density of Arithmetic Representations of Function Fields
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6568/
DO  - 10.46298/epiga.2022.6568
LA  - en
ID  - 10_46298_epiga_2022_6568
ER  - 
%0 Journal Article
%A Esnault, Hélène
%A Kerz, Moritz
%T Density of Arithmetic Representations of Function Fields
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6568/
%R 10.46298/epiga.2022.6568
%G en
%F 10_46298_epiga_2022_6568
Esnault, Hélène; Kerz, Moritz. Density of Arithmetic Representations of Function Fields. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.6568

Cité par Sources :