An atlas of K3 surfaces with finite automorphism group
Épijournal de Géométrie Algébrique, Tome 6 (2022)
Voir la notice de l'article provenant de la source Episciences
We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves.
@article{10_46298_epiga_2022_6286,
author = {Roulleau, Xavier},
title = {An atlas of {K3} surfaces with finite automorphism group},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {6},
year = {2022},
doi = {10.46298/epiga.2022.6286},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6286/}
}
TY - JOUR AU - Roulleau, Xavier TI - An atlas of K3 surfaces with finite automorphism group JO - Épijournal de Géométrie Algébrique PY - 2022 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6286/ DO - 10.46298/epiga.2022.6286 LA - en ID - 10_46298_epiga_2022_6286 ER -
Roulleau, Xavier. An atlas of K3 surfaces with finite automorphism group. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.6286
Cité par Sources :