An atlas of K3 surfaces with finite automorphism group
Épijournal de Géométrie Algébrique, Tome 6 (2022)

Voir la notice de l'article provenant de la source Episciences

We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves.
DOI : 10.46298/epiga.2022.6286
Classification : 14J28
@article{10_46298_epiga_2022_6286,
     author = {Roulleau, Xavier},
     title = {An atlas of {K3} surfaces with finite automorphism group},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {6},
     year = {2022},
     doi = {10.46298/epiga.2022.6286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6286/}
}
TY  - JOUR
AU  - Roulleau, Xavier
TI  - An atlas of K3 surfaces with finite automorphism group
JO  - Épijournal de Géométrie Algébrique
PY  - 2022
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6286/
DO  - 10.46298/epiga.2022.6286
LA  - en
ID  - 10_46298_epiga_2022_6286
ER  - 
%0 Journal Article
%A Roulleau, Xavier
%T An atlas of K3 surfaces with finite automorphism group
%J Épijournal de Géométrie Algébrique
%D 2022
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2022.6286/
%R 10.46298/epiga.2022.6286
%G en
%F 10_46298_epiga_2022_6286
Roulleau, Xavier. An atlas of K3 surfaces with finite automorphism group. Épijournal de Géométrie Algébrique, Tome 6 (2022). doi: 10.46298/epiga.2022.6286

Cité par Sources :