The space of twisted cubics
    
    
  
  
  
      
      
      
        
Épijournal de Géométrie Algébrique, Tome 5 (2021)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Episciences
            
              We consider the Cohen-Macaulay compactification of the space of twisted cubics in projective n-space. This compactification is the fine moduli scheme representing the functor of CM-curves with Hilbert polynomial 3t+1. We show that the moduli scheme of CM-curves in projective 3-space is isomorphic to the twisted cubic component of the Hilbert scheme. We also describe the compactification for twisted cubics in n-space.
            
            
            
          
        
      @article{10_46298_epiga_2021_volume5_5573,
     author = {Heinrich, Katharina and Skjelnes, Roy and Stevens, Jan},
     title = {The space of twisted cubics},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {5},
     year = {2021},
     doi = {10.46298/epiga.2021.volume5.5573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2021.volume5.5573/}
}
                      
                      
                    TY - JOUR AU - Heinrich, Katharina AU - Skjelnes, Roy AU - Stevens, Jan TI - The space of twisted cubics JO - Épijournal de Géométrie Algébrique PY - 2021 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2021.volume5.5573/ DO - 10.46298/epiga.2021.volume5.5573 LA - en ID - 10_46298_epiga_2021_volume5_5573 ER -
%0 Journal Article %A Heinrich, Katharina %A Skjelnes, Roy %A Stevens, Jan %T The space of twisted cubics %J Épijournal de Géométrie Algébrique %D 2021 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2021.volume5.5573/ %R 10.46298/epiga.2021.volume5.5573 %G en %F 10_46298_epiga_2021_volume5_5573
Heinrich, Katharina; Skjelnes, Roy; Stevens, Jan. The space of twisted cubics. Épijournal de Géométrie Algébrique, Tome 5 (2021). doi: 10.46298/epiga.2021.volume5.5573
Cité par Sources :