Étale triviality of finite equivariant vector bundles
Épijournal de Géométrie Algébrique, Tome 5 (2021)

Voir la notice de l'article provenant de la source Episciences

Let H be a complex Lie group acting holomorphically on a complex analytic space X such that the restriction to X_red of every H-invariant regular function on X is constant. We prove that an H-equivariant holomorphic vector bundle E over X is $H$-finite, meaning f_1(E)= f_2(E) as H-equivariant bundles for two distinct polynomials f_1 and f_2 whose coefficients are nonnegative integers, if and only if the pullback of E along some H-equivariant finite étale covering of X is trivial as an H-equivariant bundle.
DOI : 10.46298/epiga.2021.7275
Classification : 32C15, 32L05, 32M05
@article{10_46298_epiga_2021_7275,
     author = {Biswas, Indranil and O'Sullivan, Peter},
     title = {\'Etale triviality of finite equivariant vector bundles},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {5},
     year = {2021},
     doi = {10.46298/epiga.2021.7275},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2021.7275/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - O'Sullivan, Peter
TI  - Étale triviality of finite equivariant vector bundles
JO  - Épijournal de Géométrie Algébrique
PY  - 2021
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2021.7275/
DO  - 10.46298/epiga.2021.7275
LA  - en
ID  - 10_46298_epiga_2021_7275
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A O'Sullivan, Peter
%T Étale triviality of finite equivariant vector bundles
%J Épijournal de Géométrie Algébrique
%D 2021
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2021.7275/
%R 10.46298/epiga.2021.7275
%G en
%F 10_46298_epiga_2021_7275
Biswas, Indranil; O'Sullivan, Peter. Étale triviality of finite equivariant vector bundles. Épijournal de Géométrie Algébrique, Tome 5 (2021). doi: 10.46298/epiga.2021.7275

Cité par Sources :