Covariants, Invariant Subsets, and First Integrals
Épijournal de Géométrie Algébrique, Tome 4 (2020)

Voir la notice de l'article provenant de la source Episciences

Let $k$ be an algebraically closed field of characteristic 0, and let $V$ be a finite-dimensional vector space. Let $End(V)$ be the semigroup of all polynomial endomorphisms of $V$. Let $E$ be a subset of $End(V)$ which is a linear subspace and also a semi-subgroup. Both $End(V)$ and $E$ are ind-varieties which act on $V$ in the obvious way. In this paper, we study important aspects of such actions. We assign to $E$ a linear subspace $D_{E}$ of the vector fields on $V$. A subvariety $X$ of $V$ is said to $D_{E}$ -invariant if $h(x)$ is in the tangent space of $x$ for all $h$ in $D_{E}$ and $x$ in $X$. We show that $X$ is $D_{E}$ -invariant if and only if it is the union of $E$-orbits. For such $X$, we define first integrals and construct a quotient space for the $E$-action. An important case occurs when $G$ is an algebraic subgroup of $GL(V$) and $E$ consists of the $G$-equivariant polynomial endomorphisms. In this case, the associated $D_{E}$ is the space the $G$-invariant vector fields. A significant question here is whether there are non-constant $G$-invariant first integrals on $X$. As examples, we study the adjoint representation, orbit closures of highest weight vectors, and representations of the additive group. We also look at finite-dimensional irreducible representations of SL2 and its nullcone.
@article{10_46298_epiga_2020_volume4_5976,
     author = {Grosshans, Frank and Kraft, Hanspeter},
     title = {Covariants, {Invariant} {Subsets,} and {First} {Integrals}},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {4},
     year = {2020},
     doi = {10.46298/epiga.2020.volume4.5976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5976/}
}
TY  - JOUR
AU  - Grosshans, Frank
AU  - Kraft, Hanspeter
TI  - Covariants, Invariant Subsets, and First Integrals
JO  - Épijournal de Géométrie Algébrique
PY  - 2020
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5976/
DO  - 10.46298/epiga.2020.volume4.5976
LA  - en
ID  - 10_46298_epiga_2020_volume4_5976
ER  - 
%0 Journal Article
%A Grosshans, Frank
%A Kraft, Hanspeter
%T Covariants, Invariant Subsets, and First Integrals
%J Épijournal de Géométrie Algébrique
%D 2020
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5976/
%R 10.46298/epiga.2020.volume4.5976
%G en
%F 10_46298_epiga_2020_volume4_5976
Grosshans, Frank; Kraft, Hanspeter. Covariants, Invariant Subsets, and First Integrals. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5976

Cité par Sources :