Covariants, Invariant Subsets, and First Integrals
Épijournal de Géométrie Algébrique, Tome 4 (2020)
Voir la notice de l'article provenant de la source Episciences
Let $k$ be an algebraically closed field of characteristic 0, and let $V$ be a finite-dimensional vector space. Let $End(V)$ be the semigroup of all polynomial endomorphisms of $V$. Let $E$ be a subset of $End(V)$ which is a linear subspace and also a semi-subgroup. Both $End(V)$ and $E$ are ind-varieties which act on $V$ in the obvious way. In this paper, we study important aspects of such actions. We assign to $E$ a linear subspace $D_{E}$ of the vector fields on $V$. A subvariety $X$ of $V$ is said to $D_{E}$ -invariant if $h(x)$ is in the tangent space of $x$ for all $h$ in $D_{E}$ and $x$ in $X$. We show that $X$ is $D_{E}$ -invariant if and only if it is the union of $E$-orbits. For such $X$, we define first integrals and construct a quotient space for the $E$-action. An important case occurs when $G$ is an algebraic subgroup of $GL(V$) and $E$ consists of the $G$-equivariant polynomial endomorphisms. In this case, the associated $D_{E}$ is the space the $G$-invariant vector fields. A significant question here is whether there are non-constant $G$-invariant first integrals on $X$. As examples, we study the adjoint representation, orbit closures of highest weight vectors, and representations of the additive group. We also look at finite-dimensional irreducible representations of SL2 and its nullcone.
@article{10_46298_epiga_2020_volume4_5976,
author = {Grosshans, Frank and Kraft, Hanspeter},
title = {Covariants, {Invariant} {Subsets,} and {First} {Integrals}},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {4},
year = {2020},
doi = {10.46298/epiga.2020.volume4.5976},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5976/}
}
TY - JOUR AU - Grosshans, Frank AU - Kraft, Hanspeter TI - Covariants, Invariant Subsets, and First Integrals JO - Épijournal de Géométrie Algébrique PY - 2020 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5976/ DO - 10.46298/epiga.2020.volume4.5976 LA - en ID - 10_46298_epiga_2020_volume4_5976 ER -
%0 Journal Article %A Grosshans, Frank %A Kraft, Hanspeter %T Covariants, Invariant Subsets, and First Integrals %J Épijournal de Géométrie Algébrique %D 2020 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5976/ %R 10.46298/epiga.2020.volume4.5976 %G en %F 10_46298_epiga_2020_volume4_5976
Grosshans, Frank; Kraft, Hanspeter. Covariants, Invariant Subsets, and First Integrals. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5976
Cité par Sources :