The spectral gluing theorem revisited
Épijournal de Géométrie Algébrique, Tome 4 (2020)

Voir la notice de l'article provenant de la source Episciences

We strengthen the gluing theorem occurring on the spectral side of the geometric Langlands conjecture. While the latter embeds $IndCoh_N(LS_G)$ into a category glued out of 'Fourier coefficients' parametrized by standard parabolics, our refinement explicitly identifies the essential image of such embedding.
@article{10_46298_epiga_2020_volume4_5940,
     author = {Beraldo, Dario},
     title = {The spectral gluing theorem revisited},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {4},
     year = {2020},
     doi = {10.46298/epiga.2020.volume4.5940},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5940/}
}
TY  - JOUR
AU  - Beraldo, Dario
TI  - The spectral gluing theorem revisited
JO  - Épijournal de Géométrie Algébrique
PY  - 2020
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5940/
DO  - 10.46298/epiga.2020.volume4.5940
LA  - en
ID  - 10_46298_epiga_2020_volume4_5940
ER  - 
%0 Journal Article
%A Beraldo, Dario
%T The spectral gluing theorem revisited
%J Épijournal de Géométrie Algébrique
%D 2020
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5940/
%R 10.46298/epiga.2020.volume4.5940
%G en
%F 10_46298_epiga_2020_volume4_5940
Beraldo, Dario. The spectral gluing theorem revisited. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5940

Cité par Sources :