The spectral gluing theorem revisited
Épijournal de Géométrie Algébrique, Tome 4 (2020)
Voir la notice de l'article provenant de la source Episciences
We strengthen the gluing theorem occurring on the spectral side of the geometric Langlands conjecture. While the latter embeds $IndCoh_N(LS_G)$ into a category glued out of 'Fourier coefficients' parametrized by standard parabolics, our refinement explicitly identifies the essential image of such embedding.
@article{10_46298_epiga_2020_volume4_5940,
author = {Beraldo, Dario},
title = {The spectral gluing theorem revisited},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {4},
year = {2020},
doi = {10.46298/epiga.2020.volume4.5940},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5940/}
}
TY - JOUR AU - Beraldo, Dario TI - The spectral gluing theorem revisited JO - Épijournal de Géométrie Algébrique PY - 2020 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5940/ DO - 10.46298/epiga.2020.volume4.5940 LA - en ID - 10_46298_epiga_2020_volume4_5940 ER -
Beraldo, Dario. The spectral gluing theorem revisited. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5940
Cité par Sources :