Opers of higher types, Quot-schemes and Frobenius instability loci
Épijournal de Géométrie Algébrique, Tome 4 (2020)

Voir la notice de l'article provenant de la source Episciences

In this paper we continue our study of the Frobenius instability locus in the coarse moduli space of semi-stable vector bundles of rank $r$ and degree $0$ over a smooth projective curve defined over an algebraically closed field of characteristic $p>0$. In a previous paper we identified the quot;maximal quot; Frobenius instability strata with opers (more precisely as opers of type $1$ in the terminology of the present paper) and related them to certain Quot-schemes of Frobenius direct images of line bundles. The main aim of this paper is to describe for any integer $q \geq 1$ a conjectural generalization of this correspondence between opers of type $q$ (which we introduce here) and Quot-schemes of Frobenius direct images of vector bundles of rank $q$. We also give a conjectural formula for the dimension of the Frobenius instability locus.
@article{10_46298_epiga_2020_volume4_5721,
     author = {Joshi, Kirti and Pauly, Christian},
     title = {Opers of higher types, {Quot-schemes} and {Frobenius} instability loci},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {4},
     year = {2020},
     doi = {10.46298/epiga.2020.volume4.5721},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5721/}
}
TY  - JOUR
AU  - Joshi, Kirti
AU  - Pauly, Christian
TI  - Opers of higher types, Quot-schemes and Frobenius instability loci
JO  - Épijournal de Géométrie Algébrique
PY  - 2020
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5721/
DO  - 10.46298/epiga.2020.volume4.5721
LA  - en
ID  - 10_46298_epiga_2020_volume4_5721
ER  - 
%0 Journal Article
%A Joshi, Kirti
%A Pauly, Christian
%T Opers of higher types, Quot-schemes and Frobenius instability loci
%J Épijournal de Géométrie Algébrique
%D 2020
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5721/
%R 10.46298/epiga.2020.volume4.5721
%G en
%F 10_46298_epiga_2020_volume4_5721
Joshi, Kirti; Pauly, Christian. Opers of higher types, Quot-schemes and Frobenius instability loci. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5721

Cité par Sources :