Zero cycles on the moduli space of curves
Épijournal de Géométrie Algébrique, Tome 4 (2020)
Voir la notice de l'article provenant de la source Episciences
While the Chow groups of 0-dimensional cycles on the moduli spaces of Deligne-Mumford stable pointed curves can be very complicated, the span of the 0-dimensional tautological cycles is always of rank 1. The question of whether a given moduli point [C,p_1,...,p_n] determines a tautological 0-cycle is subtle. Our main results address the question for curves on rational and K3 surfaces. If C is a nonsingular curve on a nonsingular rational surface of positive degree with respect to the anticanonical class, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the virtual dimension in Gromov-Witten theory of the moduli space of stable maps. If C is a nonsingular curve on a K3 surface, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the genus of C and every marking is a Beauville-Voisin point. The latter result provides a connection between the rank 1 tautological 0-cycles on the moduli of curves and the rank 1 tautological 0-cycles on K3 surfaces. Several further results related to tautological 0-cycles on the moduli spaces of curves are proven. Many open questions concerning the moduli points of curves on other surfaces (Abelian, Enriques, general type) are discussed.
@article{10_46298_epiga_2020_volume4_5601,
author = {Pandharipande, Rahul and Schmitt, Johannes},
title = {Zero cycles on the moduli space of curves},
journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
publisher = {mathdoc},
volume = {4},
year = {2020},
doi = {10.46298/epiga.2020.volume4.5601},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5601/}
}
TY - JOUR AU - Pandharipande, Rahul AU - Schmitt, Johannes TI - Zero cycles on the moduli space of curves JO - Épijournal de Géométrie Algébrique PY - 2020 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5601/ DO - 10.46298/epiga.2020.volume4.5601 LA - en ID - 10_46298_epiga_2020_volume4_5601 ER -
%0 Journal Article %A Pandharipande, Rahul %A Schmitt, Johannes %T Zero cycles on the moduli space of curves %J Épijournal de Géométrie Algébrique %D 2020 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5601/ %R 10.46298/epiga.2020.volume4.5601 %G en %F 10_46298_epiga_2020_volume4_5601
Pandharipande, Rahul; Schmitt, Johannes. Zero cycles on the moduli space of curves. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5601
Cité par Sources :