Zero cycles on the moduli space of curves
Épijournal de Géométrie Algébrique, Tome 4 (2020)

Voir la notice de l'article provenant de la source Episciences

While the Chow groups of 0-dimensional cycles on the moduli spaces of Deligne-Mumford stable pointed curves can be very complicated, the span of the 0-dimensional tautological cycles is always of rank 1. The question of whether a given moduli point [C,p_1,...,p_n] determines a tautological 0-cycle is subtle. Our main results address the question for curves on rational and K3 surfaces. If C is a nonsingular curve on a nonsingular rational surface of positive degree with respect to the anticanonical class, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the virtual dimension in Gromov-Witten theory of the moduli space of stable maps. If C is a nonsingular curve on a K3 surface, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the genus of C and every marking is a Beauville-Voisin point. The latter result provides a connection between the rank 1 tautological 0-cycles on the moduli of curves and the rank 1 tautological 0-cycles on K3 surfaces. Several further results related to tautological 0-cycles on the moduli spaces of curves are proven. Many open questions concerning the moduli points of curves on other surfaces (Abelian, Enriques, general type) are discussed.
@article{10_46298_epiga_2020_volume4_5601,
     author = {Pandharipande, Rahul and Schmitt, Johannes},
     title = {Zero cycles on the moduli space of curves},
     journal = {\'Epijournal de G\'eom\'etrie Alg\'ebrique},
     publisher = {mathdoc},
     volume = {4},
     year = {2020},
     doi = {10.46298/epiga.2020.volume4.5601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5601/}
}
TY  - JOUR
AU  - Pandharipande, Rahul
AU  - Schmitt, Johannes
TI  - Zero cycles on the moduli space of curves
JO  - Épijournal de Géométrie Algébrique
PY  - 2020
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5601/
DO  - 10.46298/epiga.2020.volume4.5601
LA  - en
ID  - 10_46298_epiga_2020_volume4_5601
ER  - 
%0 Journal Article
%A Pandharipande, Rahul
%A Schmitt, Johannes
%T Zero cycles on the moduli space of curves
%J Épijournal de Géométrie Algébrique
%D 2020
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/epiga.2020.volume4.5601/
%R 10.46298/epiga.2020.volume4.5601
%G en
%F 10_46298_epiga_2020_volume4_5601
Pandharipande, Rahul; Schmitt, Johannes. Zero cycles on the moduli space of curves. Épijournal de Géométrie Algébrique, Tome 4 (2020). doi: 10.46298/epiga.2020.volume4.5601

Cité par Sources :